Materimakalah ini berfokus pada salah satu bangun datar yaitu trapesium . Hal ini tentu tidak terlepas dari kehidupan sehari-hari masyarakat yang memerlukan perhitungan menggunakan rumus Perhatikan gambar di bawah ini. Selembar kertas berbentuk trapesium dengan ukuran sisi yang sejajar 24 dm dan 16 dm. Luas trapesium adalah 400
RumusLuas Trapesium Dan Contoh Soalnya. Dalam kegiatan menghitung luas bangun datar trapesium, kita akan menggunakan rumus yang satu ini: Luas = ½ × jumlah panjang sisi sejajar × tinggi. Berdasarkan rumus tersebut, maka kita dapat menghitung luas dari sebuah trapesium. Untuk bisa lebih memahami rumus ini, mari kita lihat contoh soal yang
Tentukanluas trapesium di bawah ini. Luas trapeium adalah setengahnya dari jumlah sisi yang sejajar kali tinggi. Pada soal, trapesiumnya merupakan trapesium sama kaki yang tidak diketahui panjang alas dan tinggi trapesium berapa. Untuk mencari panjang alas dan trapesium tersebut, bisa kita gunakan perbandingan sisi-sisi pada segitiga siku-siku yang menghadap sudut 30ᵒ, 60ᵒ dan 90ᵒ.
Teksvideo. di sini kita akan mencari luas dari penyelesaian pertidaksamaan Ini pertama kita akan mencari pembuat nol untuk kedua pertidaksamaan ini ya itu untuk x = 0, maka diperoleh y Min 2/5 Kemudian untuk c nya 0 maka diperoleh X minus 2 begitupun untuk pertidaksamaan ini ketika X bernilai nol maka diperolehnya min 6 min 2 yaitu nilainya 3 Kemudian untuk usahanya bernilai nol diperoleh x
Untukmencari luas trapseium (ii) kita gunakan rumus luas trapesium yaitu: Luas = ½ x (CD + AB) x t Luas = ½ x (CD + AB) x BC Luas = ½ x (8 cm + 14 cm) x 8 cm Luas = 88 cm2 c. Perhatikan gambar (iii) seperti di bawah ini.
Tentukanluas trapesium abcd sama kaki pada gambar di bawah ini! Sumber: Kompas. Jawab: Untuk menentukan luas trapesium tersebut, pertama-tama kita harus menentukan berapa tinggi dari trapesium tersebut menggunakan rumus pitagoras. t = √(ad²-ao²) = √(10²-6²) = √(100-36) = √64 = 8.
Contohsoal trapesium ini dapat diselesaikan dengan cara seperti di bawah ini: Luas = ½ x (10 + 21) x 8 = 124 m² Maka harga seluruh tanah yaitu: Harga tanah = 124 m² x Rp 80.000 = Rp 9.920.000 Jadi harga seluruh tanah ialah Rp 9.920.000,00. 4. Sebuah trapesium memiliki luas 170 cm².
soalyang ada di artikel ini sering kita temukan pada tugas buku sekolah yang diberikab oleh bapak/ibu guru. sering kali kita mengingatnya waktu disekolah tetapi setelah di rumah kita lupa mengerjakan karna kesulitan dengan soal-soalnya.
Perhatikangambar segitiga siku-siku ABC di bawah. Tentukan: a. keliling segitiga ABC, Tentukan luas trapesium di bawah ini 30 derajat dan 30 derajat. Rizantri https://terasedukasi.com. You May Also Like. KUNCI JAWABAN matematika kelas 8 Ayo Kita Berlatih 10.1 halaman 279 Bab 10. 1. Suatu ketika Rohim merencanakan untuk menemui dua teman
Hitunglahkeliling dan luas dari persegi panjang di bawah ini! Jawab: K = p + l + p + l = 10 cm + 5 cm + 10 cm + 5 cm = 30 cm. L = p x l = 10 cm x 5 cm = 50 cm 2. Soal 4. Tentukan keliling dan juga luas trapesium di atas! Jawab: Perhatikan gambar di atas. Pada ABED merupakan bangun persegi panjang sehingga, panjang dari sisi ED = AB = 12 cm
Luas= 168 cm2. Jadi luas bangun trapesium di atas adalah 168 cm2. #Contoh Soal 3. Perhatikan gambar berikut ini ! Rumus Luas dan Keliling Trapesium Lengkap dengan Contoh Soal Keliling dan luas pada trapesium diatas adalah Jawab: Keliling trapesium: Perhatikan gambar diatas, ABED membentuk bangun persegi panjang, maka panjang AB = DE = 12
SisiAtas (A) = 5 Cm Sisi Bawah (B) = 17 Cm Sisi Miring (M) = 15 Cm Hitunglah Luas Trapesium. RUMUSPELAJARAN.COM - Langkah mudah mengerjakan soal hitunglah luas Trapesium jika sisi atas (a) = 5 cm sisi bawah (b) = 17 cm sisi miring (m) = 15 cm Para siswa pasti akan mendapati soal-soal matematika yang diberikan oleh guru baik itu yang mudah sampai yang sulit.
Untukdaerah yang dibatasi oleh satu kurva memiliki dua tipe luas yaitu luas dengan daerah di atas sumbu x dan daerah berada di bawah sumbu x seperti gambar berikut ini. Amati gambar dibawah ini tentukan keliling dan luas daerah yang diarsir. R 5 s 10 keliling 2 x π x r 4 x. Amati gambar dibawah ini. Tentukan keliling daerah yang diarsir pada
Tentukanluas trapesium di bawah ini. FA F. Ayudhita Master Teacher Jawaban terverifikasi Jawaban luas trapesium tersebut adalah satuan luas. Pembahasan Perhatikan segitiga siku-siku yang dibentuk oleh trapesium di atas. Karena segitiga ABC merupakan segitiga istimewa dengan sudut 30, 60, 90, maka perbandingan sisi-sisi segitiga tersebut ialah
Tentukanluas layang-layang di bawah ini! a. 25 b. 30 c. 28 d. 32 cm Penyelesaian; Sebuah trapesium siku-siku memiliki panjang seperti gambar di bawah ini, berapakah keliling trapesium siku-siku tersebut? a. 23 cm b. 19 cm c. 20 cm d. 21 cm Penyelesaian; Diketahui: AD = QC = 4 cm
C08uJ. Saat pergi ke pantai, Anda tentu pernah melihat perahu. Jika diamati, perahu memiliki bentuk segi empat yang bagian atasnya lebih panjang daripada bagian bawahnya. Dalam bangun datar, kita mengenalnya dengan trapesium. Seperti perahu tersebut, trapesium adalah salah satu bangun datar dua dimensi berbentuk segi empat yang memiliki dua sisi sejajar yang tidak sama panjang. Sisi sejajar itu disebut alas dan sisi lainnya yang tidak sejajar disebut kaki atau sisi lateral. Jika ditarik garis antar alas tersebut, maka garis tersebut dinamakan tinggi trapesium. Pada artikel ini, kita akan membahas tentang sifat-sifat trapesium, tiga jenis trapesium, rumus trapesium untuk mencari luas dan keliling trapesium, serta contoh soal untuk menghitung luas trapesium dan kelilingnya. Simak penjelasan selengkapnya berikut ini. Tersedia guru-guru Matematika terbaik5 38 ulasan Kursus pertama gratis!5 46 ulasan Kursus pertama gratis!5 20 ulasan Kursus pertama gratis!5 22 ulasan Kursus pertama gratis!5 33 ulasan Kursus pertama gratis!5 43 ulasan Kursus pertama gratis! 52 ulasan Kursus pertama gratis! 12 ulasan Kursus pertama gratis!5 38 ulasan Kursus pertama gratis!5 46 ulasan Kursus pertama gratis!5 20 ulasan Kursus pertama gratis!5 22 ulasan Kursus pertama gratis!5 33 ulasan Kursus pertama gratis!5 43 ulasan Kursus pertama gratis! 52 ulasan Kursus pertama gratis! 12 ulasan Kursus pertama gratis!MulaiSifat-Sifat Trapesium Sebelum membahas jenis-jenis dan rumus trapesium lebih jauh, Anda perlu mengenali sifat-sifat trapesium, yaitu Termasuk jenis bangun datar segi empat. Memiliki sepasang sisi sejajar, di antara dua sisi sejajar suatu trapesium saling berpelurus. Hanya memiliki satu simetri putar. Memiliki satu simetri lipat pada trapesium sama kaki. Pasangan sudut alas trapesium sama kaki memiliki sudut yang sama besar. Diagonal trapesium sama kaki berukuran sama panjang. Bagaimana dengan sifat dan unsur pada lingkaran? Jenis-Jenis Trapesium Menurut modul Matematika Geometri Datar dan Ruang karya Agus Suharja, dkk. ada tiga jenis trapesium, yaitu trapesium sembarang, trapesium sama kaki, dan trapesium siku-siku. Masing-masing memiliki ciri-ciri tersendiri. Trapesium Sembarang Trapesium sembarang dengan keempat sisinya yang tidak sama panjang. Sumber Detik Trapesium sembarang adalah trapesium yang keempat sisinya memiliki panjang yang berbeda. Menurut gambar trapesium di atas AB sejajar dengan DC AD dan BC disebut kaki trapesium AB merupakan sisi terpanjang, disebut dengan alas trapesium Trapesium Sama Kaki Trapesium sama kaki memiliki kaki yang sama panjang. Sumber Detik Trapesium sama kaki adalah trapesium yang kaki-kakinya sejajar atau sama panjang. Sudut trapesium sama kaki tidak ada yang berbentuk siku-siku. Dari gambar trapesium di atas AB sejajar dengan DC, AB sama dengan BC DAC sama dengan CBA AC sama dengan BD Trapesium Siku-Siku Trapesium siku-siku memiliki ciri yaitu salah satu sudutnya membentuk sudut siku-siku. Sumber Detik Sesuai namanya, trapesium siku-siku memiliki sudut 90◦ atau salah satu sudutnya membentuk siku-siku. Berdasarkan gambar trapesium di atas DC sejajar dengan AB DAB merupakan bentuk sudut siku-siku. Tersedia guru-guru Matematika terbaik5 38 ulasan Kursus pertama gratis!5 46 ulasan Kursus pertama gratis!5 20 ulasan Kursus pertama gratis!5 22 ulasan Kursus pertama gratis!5 33 ulasan Kursus pertama gratis!5 43 ulasan Kursus pertama gratis! 52 ulasan Kursus pertama gratis! 12 ulasan Kursus pertama gratis!5 38 ulasan Kursus pertama gratis!5 46 ulasan Kursus pertama gratis!5 20 ulasan Kursus pertama gratis!5 22 ulasan Kursus pertama gratis!5 33 ulasan Kursus pertama gratis!5 43 ulasan Kursus pertama gratis! 52 ulasan Kursus pertama gratis! 12 ulasan Kursus pertama gratis!MulaiRumus Luas Trapesium Luas trapesium adalah setengah luas jajar genjang. Sumber Kompas Jika dua trapesium digabungkan, maka akan membentuk jajar genjang. Maka untuk menghitung luas trapesium sama dengan menghitung setengah luas jajar genjang atau L = ½ x luas jajar genjang. Temukan tempat les matematika SD yang bagus untuk anak-anak kesayangan Anda. Untuk menghitung luas trapesium, Anda bisa menggunakan rumus berikut ini Luas trapesium = 1/2 a+b t = {a+bt}/2 Keterangan a = alas a atau panjang sisi sejajar yang pendek b = alas b atau panjang sisi sejajar yang panjang t = tinggi trapesium Rumus luas trapesium ini berlaku untuk rumus trapesium sama kaki, trapesium siku-siku, maupun trapesium sembarang. Biasanya, dalam soal matematika, jika tinggi trapesium tidak diketahui, Anda perlu menghitungnya dengn rumus pitagoras pada segitiga. Cara menghitung keliling trapesium sama seperti menghitung keliling bangun datar lainnya yaitu dengan menjumlahkan semua sisinya. Untuk menghitung keliling trapesium, rumus yang bisa Anda gunakan yaitu Keliling trapesium = a+b+c+d semua sisi dijumlahkan Ini berlaku untuk rumus keliling trapesium siku-siku, trapesium sembarang, maupun trapesium sama kaki. Apakah Anda juga sudah memahami rumus dari balok? Contoh Soal Memahami jenis-jenis dan rumus luas serta keliling trapesium saja belum cukup, Anda perlu memahami cara menghitung luas dan keliling trapesium. Simak beberapa contoh soal trapesium berikut. Diketahui sebuah trapesium memiliki a =8 , b = 6 , dan t= 3 , Berapakah luas trapesium tersebut? Jawab L = ½ a + b t L = ½ 8+6 3 L = 21 cm² Masing-masing sisi sejajar trapesium adalah 30 cm , dan 14 cm, dengan tinggi 8 cm. Hitunglah luas trapesium tersebut! Jawab L = ½ x jumlah panjang sisi sejajar x tinggi L= ½ x 30+14 x 8 L = ½ x 44 x 8 L = 176 cm² Tentukan luas trapesium abcd sama kaki pada gambar di bawah ini! Sumber Kompas Jawab Untuk menentukan luas trapesium tersebut, pertama-tama kita harus menentukan berapa tinggi dari trapesium tersebut menggunakan rumus pitagoras. t = √ad²-ao² = √10²-6² = √100-36 = √64 = 8 Maka di dapatkan tinggi t adalah 8 cm, panjang sisi sejajar yang pendek a adalah 14 cm, sedangkan panjang sisi sejajar yang panjang adalah 14 + 6 + 6 = 26 cm. Maka luas trapesium tersebut dapat dicari menggunakkan persamaan sebagai berikut L = ½ a + b t L = ½ 14+26 8 L = ½ x 40 x 8 L = ½ x 320 L = 160 cm² Sebuah trapesium memiliki panjang alas 3 cm dan 6 cm, kemudian tinggi dari trapesium tersebut adalah 4 cm. Berapa luas dan keliling bangun trapesium tersebut? Sumber Zenius Jawab L = ½ x alas a + alas b x tinggi trapesium L = ½ x 3 + 6 x 4 L = 18 cm² Untuk mencari keliling trapesium, cari dulu sisi miringnya menggunakan phytagoras. Jadi, keliling trapesium = a + b + c + d = 3 + 4 + 6 + 5 = 18 cm. Sederhana, bukan? Meski begitu, Anda tetap harus banyak berlatih soal-soal latihan agar semakin paham cara menghitung luas dan keliling trapesium. Periksa artikel-artikel kami lainnya tentang Matematika untuk mempelajari berbagai rumus matematika yang lain seperti rumus layang-layang, lingkaran, balok, dan sebagainya. Anda juga bisa menghubungi guru matematika berpengalaman untuk les matematika di website Superprof.
Kelas VIIIPelajaran MatematikaKategori Segitiga Siku-Siku & Perbandingan Sisi-SisiKata Kunci trapesium, luas, perbandingan, dasar, sudutKode [Kelas 8 Matematika Bab 8 - Segitiga dan Segi Empat]PenyelesaianPerhatikan skema segitiga siku-siku dan trapesium pada gambar perbandingan dasar ΔABCPada gambar terlampir telah dibuat segitiga siku-siku ABC dengan ∠A = 30°.Sesuai ketentuan, angka banding dari panjang sisi-sisinya adalah sebagai berikut⇒ sisi BC yang terletak di hadapan sudut A adalah 1⇒ sisi AB yang terletak di samping sudut A adalah √3⇒ sisi miring AC adalah 2Jadi perbandingan dasarnya adalah BC AB AC = 1 √3 ∠C = 180° - 90° - 30° = 60°.Step-2Siapkan panjang sisi-sisi ΔKQLPerhatikan segitiga siku-siku KLQ pada trapesium dengan ∠K = 30°.Panjang sisi miring KQ telah diketahui sebesar 1 satuan antara KQ dan AC adalah KQ = ¹/₂ x untuk memperoleh panjang KL dan QL kita kalikan angka-angka perbandingan dasar dengan ¹/₂.⇒ KQ bersesuaian dengan AC, jadi KQ = ¹/₂ x 2 = 1⇒ LQ bersesuaian dengan BC, jadi LQ = ¹/₂ x 1 = 0,5⇒ KL bersesuaian dengan AB, jadi KL = ¹/₂ x √3 = 0,5√3Step-3Hitung luas trapesium⇒ ΔMNP kongruen dengan ΔKLM⇒ Panjang PQ = LM = 1⇒ Panjang KN = KL + LM + LN, yakni 0,5√3 + 1 + 0,5√3 diperoleh KN = 1 + √3Sekali lagi kita pertegas data-data yang diperlukan,⇒ panjang sisi atas trapesium = 1 satuan panjang⇒ panjang sisi alas trapesium adalah KN = 1 + √3 satuan panjang,⇒ panjang tinggi trapesium = 0,5 satuan luas trapesium sebesar ______________________________Simak persoalan pembuktian segitiga pelajari soal menarik lainnya tentang "Ahmad dan Udin berdiri saling membelakangi untuk main tembak-tembakan pistol bambu" untuk menentukan jarak mereka berdua menggunakan dalil kasus seputar luas segitiga yang menggunakan rumus setengah
ilustrasi oleh Rumus trapesium yaitu Luas = 1/2 a+b x t, keliling trapesium K = a+b+c+d. Trapesium adalah bangun datar dua dimensi yang tersusun oleh 4 buah sisi yaitu 2 buah sisi sejajar yang tidak sama panjang dan 2 buah sisi lainnya. Bangun datar trapesium termasuk jenis bangun datar segi empat atau quadrilateral, karena mempunyai 4 buah sisi. Sifat-Sifat TrapesiumJenis-Jenis TrapesiumRumus TrapesiumContoh Soal dan Penyelesaian Sifat-Sifat Trapesium Merupakan bangun datar dengan 4 sisi quadrilateralMempunyai 2 sisi sejajar yang tidak sama panjangMemiliki 4 buah titik sudutMinimal mempunyai 1 titik sudut tumpulMempunyai 1 simetri putar Jenis-Jenis Trapesium Terdapat 3 jenis bangun datar trapesium, yaitu 1. Trapesium Sembarang Trapesium sembarang adalah bangun trapesium yang setiap sisinya memiliki ukuran berbeda-beda. 2. Trapesium Siku-Siku Trapesium siku-siku adalah bangun trapesium yang salah satu dari empat sudutnya membentuk sudut siku-siku 90º. Pada trapesium siku-siku berlaku teorema pythagoras, karena terdapat salah satu sudut siku-siku sehingga terdapat bangun segitiga siku-siku di dalam bangun trapesium siku-siku. Berikut rumus-rumus yang diperoleh dari trapesium siku-siku, Rumus tinggi trapesium siku-siku atau sama dengan panjang sisi d. Rumus sisi miring c trapesium siku-siku Rumus sisi alas a trapesium siku-siku 3. Trapesium Sama Kaki Trapesium sama kaki adalah bangun trapesium dengan sisi yang tidak sejajar mempunyai ukuran yang sama. Karena mempunyai 2 sisi yang sama panjang, dapat diperoleh rumus keliling trapesium sama kaki, keliling = a + b + 2x Keterangan t = tinggi trapesiuma, b = adalah sisi yang sejajar, sisi a merupakan panjang AB dan sisi b merupakan panjang DC NamaRumusLuas LKeliling KllKll = AB + BC + CD + DATinggi tSisi a ABatau AB = Kll – CD – BC – ADSisi b CDatau CD = Kll – AB – BC – ADSisi ADAD = Kll – CD – BC – ABSisi BCBC = Kll – CD – AD – AB Contoh Soal dan Penyelesaian Contoh 1 Hitunglah luas dan keliling trapesium di bawah! Diketahui Sisi sejajar a = 13 cm, b = 8 cm, t = 4 cmSisi lainnya c = 5 cm, d = 7 cm Ditanya Luas dan keliling trapesium! Penyelesaian Menghitung Luas Jadi, luas trapesium adalah 42 cm². Menghitung Keliling Kll = a + b + c + d = 13 cm + 8 cm + 5 cm + 7 cm = 33 cm Jadi, keliling trapesium adalah 33 cm. Contoh 2 Hitunglah tinggi trapesium yang mempunyai luas 75 cm² dengan sisi sejajar 7 cm dan 8 cm! Diketahui Sisi sejajar a = 7 cm, b = 8 cmL = 75 cm² Ditanya Tinggi trapesium! Penyelesaian Jadi, tinggi trapesium adalah 10 cm. Contoh 3 Tentukan luas dari masing-masing trapesium pada gambar berikut. Penyelesaian Perhatikan gambar 1 seperti gambar di bawah Dari gambar tersebut diketahui AD = CE = 6 cm dan AB = CD = 10 cm. Untuk mencari luas bangun trapesium i terlebih dahulu harus mencari panjang BC, panjang BC akan didapat jika panjang DE diketahui. Untuk mencari panjang DE kita gunakan rumus teorema Pythagoras, yaitu DE = √CD2 – CE2 = √102 – 62 DE = √100 – 36 DE = √64 = 8 cm Karena bangun trapesium i merupakan trapesium sama kaki, maka BC = AD + 2 x DE BC = AD + 2 x DE = 6 cm + 2 x 8 cm = 22 cm Untuk mencari luas trapseium i kita gunakan rumus luas trapesium yaitu Luas = ½ x AD + BC x t = ½ x 6 cm + 22 cm x 8 cm = 112 cm2 Perhatikan gambar 2 seperti di bawah Dari gambar tersebut diketahui BC = CD = 8 cm, AD = 10 cm dan EB = 14 cm. Untuk mencari luas bangun trapesium ii terlebih dahulu harus mencari panjang AE. Untuk mencari panjang AE kita gunakan rumus teorema Pythagoras, yaitu AE = √AD2 – CD2 = √102 – 82 = √100 – 64 = √36 = 6 cm Setelah didapat panjang AE, maka panjang AB AB = AE + EB = 6 cm + 14 cm = 20 cm Untuk mencari luas trapseium ii kita gunakan rumus luas trapesium yaitu Luas = ½ x CD + AB x t = ½ x 8 cm + 20 cm x 8 cm = 112 cm2 Perhatikan gambar 3 seperti di bawah Dari gambar tersebut diketahui BF = 8 cm, AD = CD = 5 cm dan ED = 3 cm. Untuk mencari luas bangun trapesium iii terlebih dahulu harus mencari tinggi AE dan panjang AF. Untuk mencari tinggi AE kita gunakan rumus phytagoras, yaitu AE = √AD2 – DE2 = √52 – 32 = √25 – 9 = √16 = 4 cm AB = CD + DE + FB = 5 cm + 3 cm + 8 cm = 16 cm Untuk mencari luas trapseium i kita gunakan rumus luas trapesium yaitu Luas = ½ x CD + AB x t = ½ x 16 cm + 5 cm x 4 cm = 42 cm2 Perhatikan gambar 4 seperti di bawah Untuk mencari luas trapseium iv kita gunakan rumus luas trapesium yaitu Luas = ½ x CB + AD x AE = ½ x 9 cm + 4 cm x 12 cm = 78 cm2
Ilustrasi bentuk trapesium. Foto PixabayRumus luas trapesium merupakan materi bangun datar yang harus dipahami peserta didik. Trapesium tergolong sebagai bangun datar segi empat atau quadrilateral karena terdiri dari empat buah menghitung luas trapesium ini ada dalam pelajaran matematika dan telah diajarkan sejak para peserta didik duduk di bangku Sekolah Menengah Pertama SMP.Bagi yang ingin mempelajari ulang materi rumus luas trapesium, mari simak uraian artikel di bawah hingga tuntas agar semakin paham mengenai bangun datar yang Dimaksud dengan Trapesium?Ilustrasi bentuk trapesium. Foto PixabayTrapesium atau trapezoid adalah bangun datar dua dimensi yang dibentuk oleh empat rusuk, di mana keempat rusuk tersebut saling sejajar namun tidak sama panjang. Trapesium ini sebetulnya terbagi menjadi beberapa jenis. Merujuk buku Ethnomatika Belajar Konsep Matematikan Menggunakan Budaya Nusantara karya Dyah Worowirastri, trapesium dapat dibagi menjadi 3 macam, di antaranyaTrapesium sama kaki Ini adalah trapesium yang memiliki 2 sisi yang sama panjang dan 2 pasang sudut yang sama siku-siku Ini adalah bangun datar trapesium yang memiliki sisi sejajar dan memiliki 2 sudut sembarang Ini adalah trapesium yang memiliki 2 sisi sejajar, tetapi tidak sama panjangnya dan memiliki sudut yang tidak sama TrapesiumIlustrasi bentuk trapesium. Foto PixabayDiterangkan dalam buku Rumus Lengkap Matematika SMP karya Drs. Joko Untoro, bangun datar trapesium dapat dikenali dengan beberapa ciri-ciri, di antaranya sebagai berikutTrapesium merupakan bangun datar yang dibuat dari gabungan dua bangun datar. Bangun datar tersebut adalah segitiga dan persegi atau persegi dijuluki dengan nama trapezoid dalam bahasa mempunyai empat buah sisi dan empat buah titik ini juga termasuk dalam jenis bangun datar segi empat dengan satu simetri memiliki sepasang sisi sejajar yang tidak sama satu simetri lipat pada trapesium memiliki sudut yang berdekatan 180 derajat dan total seluruh sudut yang ada pada bangun ruang ini adalah 360 TrapesiumIlustrasi rumus trapesium. Foto UnsplashSebelum menghitung, pastikan untuk mengetahui rumus luas trapesium terlebih dahulu. Luas trapesium dapat dihitung dengan mengalikan jumlah rusuk sejajar dengan tinggi. Kemudian hasil dari perkalian tersebut dapat dibagi dua. Berikut penulisan rumus luas trapesium seperti dikutip dari buku Rangkuman Lengkap Matematika; SMP / MTs kelas 7/8/9 karya Tim Guru Indonesia dan Tim Redaksi Bintang WahyuLuas Trapesium = ½ x jumlah rusuk sejajar x tinggiPenting diketahui bahwa rumus luas trapesium di atas hanya berlaku pada trapesium sama kaki, siku-siku, dan sembarang. Agar lebih memahaminya, simak contoh soal rumus luas trapesium dan jawaban lengkapnya di bawah Soal Luas TrapesiumIlustrasi contoh soal rumus luas trapesium. Foto PixabaySoal 1Di bawah ini adalah contoh soal rumus luas trapesium yang diambil dari Buku Pintar Pelajaran SD/MI 5 in 1 oleh Joko UntoroSebuah trapesium memiliki panjang sisi sejajar masing-masing 10 cm dan 20 cm serta tinggi 6 cm. Berapa luas trapesium tersebut?Jadi, luas trapesium tersebut adalah 90 cm2Soal 2Mengutip buku Rangkuman Lengkap Matematika; SMP / MTs kelas 7/8/9 karya Tim Guru Indonesia dan Tim Redaksi Bintang Wahyu, berikut contoh soal rumus luas trapesiumTerdapat trapesium dengan tinggi sebesar 4 cm dan sisi sejajar sebesar 13 cm dan 10 cm. Hitung luas trapesium tersebut!Jadi, luas trapesium adalah 46 3Menukil buku Ethnomatika Belajar Konsep Matematikan Menggunakan Budaya Nusantara karya Dyah Worowirastri, di bawah adalah contoh soal rumus luas trapesiumAda trapesium yang memiliki sisi sejajar pendek 8 cm dan sisi sejajar panjang 15 cm. Tinggi dari trapesium tersebut adalah 5 cm. Lantas, berapakah luas trapesium tersebut?Sisi sejajar pendek = 8 sejajar panjang = 15 luas trapesium = 1/2 x jumlah sisi sejajar x tJadi, luas dari trapesium tersebut adalah 113 cm²Soal 4Berikut contoh soal rumus luas trapesium yang dihimpun dari buku Model Silabus Sekolah Dasar Kelas 5 yang diterbitkan oleh GrasindoTrapesium sama sisi memiliki panjang sisi sejajar yakni 7 cm dan 14 cm dengan, dengan tinggi yakni 3 cm. Lantas, berapakah luas dari trapesium sama sisi tersebut?Sisi sejajar pendek = 7 sejajar panjang = 14 luas trapesium = 1/2 x jumlah sisi sejajar x luas dari trapesium sama sisi tersebut adalah 31,5 cm²Soal 5Merujuk buku Model Silabus Sekolah Dasar Kelas 5 yang diterbitkan oleh Grasindo, berikut contoh soal rumus luas trapesiumAda trapesium panjang sisi AB adalah 7 cm, panjang AD adalah 4 cm, panjang CD adalah 4 cm, dan panjang BC adalah 5 cm. Maka, untuk menentukan luas trapesium siku-siku di atas adalah sebagai berikutLuas= ½ x jumlah sisi sejajarx tinggiJadi luas trapesium di atas adalah 22 6Berikut adalah contoh soal yang dikutip dari Buku Pintar Pelajaran SD/MI 5 in 1 oleh Joko UntoroMasing-masing sisi sejajar trapesium adalah 30 cm , dan 14 cm, dengan tinggi 8 cm. Hitunglah luas trapesium tersebut!L = ½ x jumlah panjang sisi sejajar x tinggiJadi luas trapesium di atas adalah 176 rumus luas trapesium?Berapakah luas trapesium siku-siku?Apa saja ciri-ciri trapesium?
tentukan luas trapesium di bawah ini